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Abstract—Software-Defined Networking (SDN) provides pro-
grammable, flexible and fine-grained traffic control capability,
which paves the way for realizing dynamic and high-performance
traffic measurement and traffic engineering. In the SDN paradig-
m, the traffic forwarding and measurement strategies are realized
through flow tables stored in the Tenantry Content Addressable
Memories (TCAM) of SDN switches. However, the number of
TCAM entries in SDN switches is limited. In this paper, we
aim to jointly optimize the Traffic Matrix Measurement (TMM)
and Traffic Engineering (TE) process under the TCAM capacity
and flow aggregation constraints in software-defined networks.
We first formulate the joint optimization problem as a Mixed
Integer Linear Programming (MILP) model. Then to get an
initial traffic matrix for the joint optimization problem, we
propose a simple flow rule generation strategy named Maxi-
mum Load Rule First (MLRF) to efficiently generate feasible
flow rules, which are used to provide direct measurements for
the traffic matrix measurement problem. At last, to solve the
joint optimization efficiently, we propose two efficient heuristic
algorithms named Traffic Matrix Measurement First (TMMF)
and Traffic Engineering First (TEF), respectively. TMMF and
TEF can generate feasible flow rules for realizing TMM and
TE strategies. Our evaluations on real network topologies and
traffic traces verify that by jointly optimizing the TMM and TE
strategies, both TMMF and TEF can significantly improve TMM
accuracy and TE objective (i.e., load balancing) with limited
TCAM resource.

Index Terms—Traffic matrix, traffic matrix measurement,
traffic engineering, software-defined networking, flow rule.

I. INTRODUCTION

Raffic Engineering (TE) is to put the traffic where the

network bandwidth available. TE is an efficient way to
improve network performance and guarantee the QoS require-
ments of network users. With the rapid growth of Internet
traffic, the TE problem has attracted extensive attention during
the past decades [1]. To achieve good traffic optimization
performance, TE schemes require an accurate and timely
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measurement of traffic volumes exchanged between the source
and destination nodes/IP-prefixes pairs in a network.

Traffic volumes exchanged between node pairs in a network
can be summarized in the form of a 2-dimensional matrix,
which is usually called as Traffic Matrix (TM). The Traf-
fic Matrix Measurement (TMM) also has attracted extensive
attention from the research community in the past decades
[2]. However, it is still challenging to accurately measure
TMs for practical networks. First, direct measurement of
TMs on large-scale networks is challenging due to the hard
constraints of network measurement resources (e.g., TCAM
entries, memory capacity, and processing power). In fact, well-
known solutions such as NetFlow and sFlow may consume a
large amount of computation and storage resource of network
devices [3], and thus may have an impact on the forwarding
performance of network devices as the traffic volume continues
to rise. Second, indirect methods, which estimate TMs by
solving an under-determined problem where the number of
measurements is far less than the number of flows, may suffer
from high estimation error [2]. Therefore, in order to improve
the estimation accuracy, more side information (e.g., the sizes
of some large flows [5] or linearly independent link-load
measurements [23].) must be incorporated into the problem
formulation. However, this is hard to achieve since existing
networks lack flexible routing control and fine-grained traffic
measurement capability.

In another hand, the advent of Software Defined Networking
(SDN) [4] separates the logically centralized control plane
from the underlying data plane, which brings potential benefits
for TMM and TE. First, the centralized control plane provides
a global view of network resources and enables programmable
traffic measurement and routing. Moreover, in the data plane,
each SDN switch provides several counters for each flow rule
in the flow table, and each flow can be forwarded to any
port by executing the actions of the corresponding flow rule.
Therefore, the SDN networks have the capability of improving
the performance of traffic measurement and traffic engineering.
The studies in [5], [6] reveal that SDN networks can achieve
accurate and timely traffic measurement by carefully designing
the flow rules. Moreover, the experiment results in the SDN-
enabled networks of Microsoft [7] and Google [8] verify
that the SDN networks can achieve near-optimal performance
in terms of throughput and link utilization by implementing
effective traffic engineering techniques.

However, as it happens with most emerging network ar-



chitectures and protocols, migration to SDN will not happen
overnight. The reason is that upgrading all existing legacy
devices to SDN-enabled ones poses the high budget and
operational burden, and also raises performance and security
risks [9]. Thus, large network providers usually choose to
incrementally deploy SDN devices in their existing networks
[10], [11]. As a result, hybrid SDN architecture is likely to
be a long-term solution for the real operational networks.
Therefore, we also consider hybrid SDN networks in this
paper.

In SDN networks, both TMM and TE tasks need to use
flow rules. Specifically, TMM tasks use flow rules to pick
flows for direct measurement, while TE tasks use flow rules
to control the forwarding paths for flows. To achieve high-
speed forwarding, the flow rules are usually stored in Ternary
Content Addressable Memory (TCAM) of SDN switches.
However, since the TCAMs are expensive and power hungry,
the capacity of TCAMs in an SDN switch is very limited
(e.g., commodity SDN switches generally have hundreds to
thousands TCAM entries [12]). In contrast, an SDN network
may have a huge number of flows. Accordingly, to increase the
capacity of network devices while supporting the highspeed
forwarding of packets, the latest programmable switching
chips (e.g., Trident 4 and Tofino) use the hybrid architecture
where flow tables are implemented using both Static Random-
Access Memory (SRAM) and TCAM technologies. In these
chips, the TCAM allows ternary match type tables, while
SRAM flow tables support exact match. However, these chips
also have restricted processing ability and storage space. For
example, Tofino [14] can process packets up to line rate
of 6.5Tbps. But it contains 12 physical stages, and each
stage only possesses 1.28MB SRAM+ 67.6KB TCAM. These
constraints limit the number of flows rules used to measure and
control flows. Therefore, it is still meaningful to optimally use
all available resources and ensure the most efficient utilization
of TCAM entries.

In this paper, we provide a practical and efficient solution
to carefully design the flow rules under the TCAM capacity
constraint by jointly considering the TMM and TE objectives,
and we aim to propose efficient, feasible and scalable TMM
and TE optimization strategies. Here, we say TMM and TE
strategies are feasible if they satisfy resource and flow ag-
gregation constraints. We assume that to save TCAM entries,
the flow rules in each SDN switch are initially aggregated. In
theory, the TM can be estimated based on the statistics of these
aggregated rules, and the traffic routing also can be adjusted
by modifying the forwarding actions of the aggregated rules.
However, to improve the performance of TMM and TE, we
generate new rules by disaggregating the aggregated rules
and install the new rules in available TCAM entries of each
SDN switch. The controller collects the measurement statistics
of TCAM entries periodically, estimates TM based on these
statistics, and design flow rules according to the estimated
TM. To the best of our knowledge, we make the first attempt
to jointly optimize TMM and TE performance in the SDN
paradigm. In this paper, we tackle the problem and make the
following contributions.

1) We formulate the joint optimization problem of TMM
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Fig. 1: Example for the joint optimization of TMM and TE

and TE as a Mixed Integer Linear Programming (MILP)
problem.

2) We propose a simple flow rule generation algorithm
named Maximum Load Rule First (MLRF) [21] to efficiently
generate feasible flow rules, which are used to provide direct
measurements for the TM estimation in the initial stage.

3) To solve the joint optimization problem efficiently, we
respectively propose two efficient algorithms named TMM
First (TMMF) and TE First (TEF) to design flow rules for
TMM and TE tasks. TMMF initially generates flow rules to
directly measure as many large flows as possible, and then it
determines the forwarding actions of the rules for the directly
measured large flows by considering the TE objective. While
the TEF first generates flow rules to adjust the forwarding
paths of some flows such that the TE objective is optimized,
and then it uses the rest of the available TCAM entries to
measure the large flows that are not directly measured.

4) We evaluate the performance of TMMF and TEF using
traffic traces from real ISP networks. The results verify that
both TMMF and TEF can achieve good performance for TMM
and TE.

II. MOTIVATIONS AND RELATED WORKS
A. Motivations

In SDN networks, TMM task uses flow rules to pick flows
for direct measurement, while TE task uses flow rules to
adjust the forwarding ports of the flows by executing different
forwarding actions. Let us first consider an example in Fig.
1(a). In Fig. 1(a), the numbers on the links denote the link
capacities and link weights, respectively. We assume that
to save TCAM entries, the routing rules for the flows are
aggregated based on the destination IP prefixes. The red and
purple dashed lines represent the default routes (shortest paths)
for flows far and fap, respectively. In Fig. 1(a), if SDN
switches have sufficient TCAM entries, the two flows f4r and
fag can be directly measured at any of the switches traversed
by them, and the forwarding ports of the two flows can also
be changed at the switches A, B and D. However, the TCAM
entries are scare resource in SDN switches, and each SDN
switch has a very limited number of TCAM entries. Therefore,
under the TCAM capacity constraint, we need to optimize the
TCAM usage by allocating the right TCAM entries to TMM
and TE tasks. In other words, we need to jointly optimize the
flow rules design for TMM and TE tasks.

We illustrate the joint optimization of TMM and TE in
Fig. 1(b). We assume that the bandwidth requirements of the
two flows (fap and fap) are 30 and 20 units, respectively.
The default routes for flow fap and fap are shown with
red and purple dashed lines, respectively. We assume only



switches B and D have one available TCAM entries, and
other switches do not have available TCAM entries. In this
example, if the TCAM entry of switch B is allocated to the
TMM task for measuring flow fap, the link (B, D) will be
congested. Because the TE task cannot redirect flow fap to
path A — B — FE due to lack of TCAM entries at switch B.
However, for this example, a better way is to allocate the
available TCAM entry of switch B to flow f4p and allocate
the available TCAM entry of switch D to flow fap. In this
case, the flow rules (SrclIPa, DestlPg, Forward_to_E)
and (SrclP,, Destl Pp, Forward_to_F') are respectively
generated and installed on switches B and D, where SrclP
denotes the source IP and DestI P denotes the destination
IP. By using the two flow rules, flows f4p and fap can be
measured at nodes B and D, respectively, and the route of
flow fag can also be adjusted to A — B — F.

B. Related Works

Recently, some research efforts have been made to develop
traffic measurement frameworks in the SDN paradigm. To sup-
port various measurement tasks, OpenSketch [16] introduces a
variety of hash-based sketches, and can configure the sketches
dynamically. However, OpenSketch [16] assumes specialized
hardware support on switches for traffic measurement. In order
to avoid using custom hardware for traffic measurement, [17]
and [18] propose practical traffic measurement solutions run-
ning on commodity SDN switches, and [6] extends the work
in [17], [18] by enabling concurrent and dynamic instantiating
traffic measurement tasks. However, all the solutions proposed
in [6], [16]-[18] are targeted for measuring a specific set of
flows (e.g, heavy hitters), and they are not suitable for TMM.

OpenTM [19], DCM [20], and iISTAMP [5] aim to measure
TMs in SDN. OpenTM and DCM are per-flow based mea-
surement solutions, which directly measure TM by keeping
track of statistics for each flow. OpenTM and DCM are not
scalable since the measurement resources (e.g., TCAM) are
limited while the number of flows is large. To meet the
constraints on measurement resources and improve measuring
accuracy, iSTAMP infers TMs based on both aggregated and
the k largest per-flow measurements. iSTAMP seems to make
a good tradeoff between measurement resources and accuracy,
but it also faces the following issues. First, iISTAMP omits the
flow aggregation constraints, leading to infeasible aggregated
measurements. Second, to find out the k largest flows, iISTAMP
uses all of the TCAM entries to measure all individual
flows over multiple time intervals, which will introduce non-
negligible measurement cost. To overcome the drawbacks
of iISTAMP, [21], [22] propose TM measurement schemes
considered flow aggregation and TCAM capacity constraints
for SDN networks. Recently, [23], [24] investigates the TM
measurement problem in SDN capable data center networks.
The infeasibility issue of traffic aggregation is considered in
[23] based on the assumption that the traffic measurement is
only taking place at the ToR SDN switches. The assumption
makes the method proposed in [23] hard to apply in general
networks. In addition, the complexity of choosing feasible
aggregation paths in [23] is also high for large-scale net-
works. To reduce the high-speed memory consumption and

avoid incurring high computation overhead in SDN switches,
FlowRadar [24] encodes flows and their counters using hash-
based approach and decodes the flow sizes by leveraging the
computing power at the remote servers. However, FlowRadar
also requires specialized hardware support on switches for
traffic measurement.

The SDN based TE is first applied in data center networks.
Hedera [25] and MicroTE [26] are SDN based TE approaches
proposed for data center network. To efficiently utilize network
resources, Hedera [25] uses Equal-Cost Muti-Path (ECMP) for
short-lived flows but uses a centralized approach to explicitly
route large flows. MicroTE [26] optimizes the traffic routing
based on the short-term and partial predictability of the TM.
Google and Microsoft implement SDN based TE approaches
called as SWAN [7] and B4 [8] respectively for their Wide
Area Networks (WAN). The experiments conducted by Google
and Microsoft [7], [8] verify that the SDN based TE can
achieve near-optimal performance in the aspects of throughput
and link utilization.

The studies in [7], [8], [25], [26] assume that the networks
are the full SDN network, where network nodes are SDN-
enabled. The TE problem in hybrid SDN network attracts
more attention [27]-[33] in recent years. Agarwal et al. [27]
first study the TE problem in hybrid SDN networks, where
they propose a polynomial time algorithm to optimize the
traffic routing on admissible paths. In [28], they improve the
TE performance of hybrid SDN networks by introducing an
enhanced routing protocol in hybrid SDN networks. Guo et al.
[29] optimize the OSPF weights and flow splitting ratio of the
SDN nodes to achieve better TE performance. To avoid routing
inconsistency and achieve high network utilization, Wang et
al. [30] propose an efficient approach to construct forwarding
graphs and optimize traffic routing on the forwarding graphs.
In hybrid SDN networks, the placement of SDN switches
significantly affect the TE performance. Caria et al. [31]
propose an algorithm to optimize the sequence of nodes for
SDN upgrade by considering the TE performance. To improve
the utilization of SDN devices, Xu et al. [32] study the joint
optimization of incremental SDN placement and flow routing
decisions on the SDN switches. In addition, Zhao et al. [33]
design TE approach in the hierarchical control plane for multi-
domain and multi-layer networks. Although the TE in SDN
networks attracts a lot of attention, the existing studies do not
consider the TCAM capacity constraint when implementing
TE in SDN networks.

In summary, the TMM and TE of SDN networks have
attracted much research interest in recent years. However, most
of the existing solutions have shortcomings in the aspects
of feasibility and scalability. Most importantly, none of the
previous studies has considered the joint optimization of TMM
and TM under the TCAM capacity constraint.

III. THE SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model and Assumptions

Since deploying SDN devices incrementally is a natural
choice for network providers [9], we also consider the hybrid
SDN networks, where only a subset of the nodes are SDN



switches and the rest of the nodes are traditional routers. We
assume the set of nodes deploying with SDN switches are
given. The rationality behind this assumption is twofold: 1)
Joint optimization of SDN device deployment strategy and
traffic management strategy is so difficult and complicated
that network operators prefer to consider the two problems
separately [10], [11], [27]; 2) The SDN deployment decision
is usually made based on the predicted traffic patterns, and thus
to achieve desirable network performance, the traffic manage-
ment strategy should be optimized according to the real traffic
pattern and the SDN deployment solution [11], [27]; 3) The
existing studies [10], [11] on SDN device deployment problem
usually maximize programmable traffic or TE flexibility based
on predicted traffic patterns, and how to optimize the traffic
management policy is not mentioned in these studies.

We assume that the network operators will assign a set
of IP prefixes to each node, and this mapping is known a
priori. For simplicity, we assume that a flow is indicated
by a source and destination IP prefixes pair (src_prefiz,
dst_prefix), where src_prefixz/dst_prefix is one of the
prefixes assigned to source-node/destination-node. However,
the approaches proposed in this paper can also be used to
the scenarios, where the flows are flexibly defined by 12-
tuple of packet headers supported by OpenFlow specification.
The joint optimization system for TMM and TE contains two
parts. In the data plane, the TCAMs in SDN switches match,
count, and forward packets with wildcard rules. In the control
plane, the controller: 1) fetches flow statistics (TCAM counters
and link loads), 2) estimates TM based on the statistics, 3)
dynamically designs flow rules based on the estimated TM
and TE objective, and 4) installs the new rules in the SDN
switches. Since TCAMs are expensive and power hungry, the
SDN switches have a limited number of TCAM entries. We
assume that part of the TCAM entries in each SDN switch are
used to implement default routing for flows. To save TCAM
entries, the default routing rules are aggregated based on the
destination IP prefixes. Without loss of generality, we assume
that the flows are routed along shortest path in default.

B. Problem Formulation

To achieve optimal network performance, the TMM and TE
strategies should be adjusted according to the current traffic
patterns and traffic distribution. Therefore, the current TM is
a necessary input for the joint optimization of TMM and TE.
Fig. 2 shows the framework for the joint optimization of TMM
and TE. As shown in Fig. 2, an initial TM is first estimated and
fed to the joint optimization algorithm, which allocates TCAM
resources and generates flow rules for TMM and TE tasks
by jointly considering their objectives. The network controller
will repeatedly invoke the joint optimization algorithm for a
fixed time period or when the traffic patterns change.

(1) Traffic Matrix Estimation

We can model the network as a directed graph G = (V, L),
where V' and L are the sets of nodes and links, respectively.
Each link [ € L is associated with a capacity ¢; and a routing
weight w;. Let Vopny C V denote the set of SDN nodes and
Vnspn = V\Vspn denote the non-SDN nodes. Let n; and

| Estimation of initial traffic matrix |

Initial traffic matrix

| Joint optimization of TMM and TE |<—

Traffic matrix &
traffic routing

Traffic matri

raffic patterns change or the
eoptimization time is reache

Fig. 2: The framework for the joint optimization of TMM and TE

m; be the total number of TCAM entries and the number of
available (i.e. unused or reserved) TCAM entries in SDN node
1 (1 € Vspn), respectively. Let R; be the set of flow rules of
SDN node i. Ys denotes the vector of TCAM statistics, and
Y. denotes the vector of link loads. For ease of formulation,
we use a vector X € R" to represent the vector representation
of TM, where N is the number of flows. Yg and Y}, have the
following relationship with X

YS = AsX and YL = ALX, (1)

where Ag = (Alsj) and Ay = (AY) are binary aggregation
matrices. The element A¢ € {0,1} indicates whether flow j
is forwarded by rule i, and the element A7 € {0, 1} indicates
whether flow j is going through link i. A is given and it is
fixed while Ag is determined by the flow rules designed by
the controller. Having measurements Ys and Y7 as well as
aggregation matrices Ag and Ay, the TM X can be estimated
using the following optimization formulation (2), which is a
convex optimization problem that is effective for estimating
highly fluctuating network flows [5].

X = minimize [V~ AL X3+ Yy = AX[3 + A X

s.t. X >0,

) 2)
where X is the estimated TM, and X is the weighting factor
for ||X||;. Considering the optimization formulation (2), we
can improve the estimation accuracy by generating a more
informative Y via designing a better aggregation matrix Ag.
Since Ag is determined by the measurement rules installed in
the SDN switches, a better Ag can be realized by installing
traffic measurement rules on the available TCAM entries. To
this end, we generate measurement rules by disaggregating
the default routing rules (i.e., use some rules with longer
prefixes to offload the traffic flows from the rules with shorter
prefixes), and install the newly generated measurement rules
in the available TCAM entries.

On the other hand, it has been shown that in real networks, a
small number of large flows may account for more than 80%
the traffic volume [34]. The previous studies have revealed
that accurately measuring the large flows yields the best
improvement of overall TMM performance [5], and optimizing
the forwarding paths for large flows can achieve near-optimal
TE performance [25]. Therefore, accurately measuring the
size of large flows is essential for both TMM and TE tasks.
Accordingly, we first need to identify large flows.



F' | The set of flows

P The set of candidate paths for flow f;, and we assume
* | that P; is pre-computed for each flow f;.

|fi|| The size of flow f;.

A decision variable denotes the maximum link utilization

of the network.

A binary decision variable denotes whether flow f; is

directly measured.

| A binary decision variable indicates whether flow f; goes

Pii | through SDN node ;.

A binary decision variable indicates whether flow f; is

directly measured at node j.

A binary decision variable indicates whether flow f; is

forwarded by a dedicated flow rule at node j.

A binary decision variable indicates whether flow f;

dip | chooses the pth candidate path from its candidate path

set P;.

y1 | A decision variable denotes the load of link [.

C | A large constant.

¢ A binary constant indicates whether the pth candidate
wp

path of flow f; goes through node j.

j | A binary constant indicates whether the pth candidate
Tip path of flow f; needs to use a flow rule at SDN node j.

1 | A binary constant indicates whether the pth candidate
Mip path of flow f; goes through link [.

A weighting factor for the optimization objective of
TMM.

A weighting factor for the optimization objective of TE.
the weighting factor for || X||,.

>

TABLE I: The notations used in the formulation

(2) The Joint Optimization of TMM And TE

As presented in the previous subsection, the performance
of TMM and TE can be improved significantly by accurately
measuring the sizes of large flows and optimizing their for-
warding paths. Therefore, the joint optimization of TMM and
TE is trying to directly measure more large flows and improve
the TE objective by adjusting the forwarding paths of the large
flows under the TCAM capacity constraint. Jointly optimizing
TMM and TE requires the TM to be known. However, the TM
is not known at the initial stage. For ease of description, we
first assume that the initial TM is given when we formulate
the problem, then we will present how to estimate the TM at
the initial stage in the next section.

The notations used in the formulation are summarized in
Table I. To improve the TM estimation accuracy, the opti-
mization objective of TMM is maximizing the total volume
of the directly measured flows. To avoid network congestion,
the optimization objective of TE is to minimize the maximum
link utilization. Thus, the objective for the joint optimization
problem can be formulated as:

maximize o - Zu7|f,|fﬂt 3)

fi€F

To accommodate the flows in the network, each flow f;
must be carried on one of its candidate paths:

Y bip=1 VfHieF (4)

pEP;

If flow f; goes through SDN node j, p;; equals 1, otherwise,
and it equals 0. So we have the following constraints:

> 6w, =pi; Vfi€F,jeVspy ®)
PEP;
A flow f; can be directly measured at SDN node j only if
it goes though SDN node j.

pij > wij Vfi € F,j€Vspn (6)

If flow f; is directly measured at any of the SDN nodes, u;
must be equal to 1, otherwise, it must be equal to 0. This is
expressed as:

Z OJZ‘J‘SO”U,Z‘ VfiEF 7
JE€VspN
> wijzu; VHEF ()
JE€VsDN

Moreover, a flow rule is required at SDN node j if a flow
fi will be forwarded on a link (j, k) that is not on the default
route (e.g., shortest path) of the flow f;. In this case, a flow
rule in SDN node j is used to adjust the forwarding path for
flow f;, and 6;; must be equal to 1.

Z V0 <05 Vfi€ F,j€Vspn ©)
peP;

To ensure that all the flow rules used for TMM and TE can
be realized, the following TCAM capacity for each SDN node
must be satisfied.

> (wij +0i;) <my Vi€ Vspn (10)
fieF
At last, we have the link utilization constraint:
N> nldp<a-t VieL (11)

fi€F peP;

The above joint optimization problem can be easily proved
to be NP-hard. Given that « = 0, Vgpy = V and
m; = |F| (for Vi € V), the joint optimization problem is
a multi-commodity flow problem with non-bifurcation con-
straint, which has been proved to be NP-hard [35]. Hence, to
efficiently solve the joint optimization problem in the large-
scale network, we propose two two-phase heuristic algorithms
in Section V.

IV. ESTIMATION OF INITIAL TRAFFIC MATRIX

As introduced in Section III. B, the joint optimization of
TMM and TE relies on an initial TM as the critical input.
Initially, the flow rules installed in the TACM of each SDN
switch are used to realize default routing for the flows. In
practical networks, the rules used for routing are usually
aggregated to save TCAM space (e.g., the rules for routing
the flows to the same prefix can be aggregated into one rule).
In theory, the TM can be estimated based on the statistics of
these aggregated default routing rules. However, due to the
under-determined nature of TM inference problems [5], the
direct estimation of initial TM based on the statistics of those
aggregated routing rules may suffer from significant estimation



errors. Hence, in order to improve the estimation accuracy
of initial TM, we can generate additional rules to measure
the flows under the TCAM capacity and flow aggregation
constraints. In this section, we will present the proposed traffic
measurement rule generation strategy called Maximum Load
Rule First (MLRF).

For a flow (defined by a source and destination prefixes
pair) going through SDN switch u, the controller can easily
find out the flow rule matching the flow in SDN switch u by
simply checking each rule installed in SDN switch u. Since
the prefixes owned by a node are known (see Section IIL.A),
the network operators can get the set of flows in their networks
(there is a flow between each pair of prefixes). Thus, given the
set of flows and the default routes of the flows, the number
of flows matching each rule in an SDN switch can be easily
computed. We assume that the total rate of the flows hitting
a flow rule is proportional to the number of flows hitting the
flow rule. We define the load of a rule in an SDN switch as the
number of flows matching the rule at the SDN switch. Thus,
two flow rules, which matches the same number of flows, are

assumed to have the same loads.
The detailed procedures of MLRF are described in Algo-

rithm 1. The basic idea of MLRF is trying to generate a new
flow measurement rule that can offload half the load from the
rule with the maximum load in an SDN switch in each step.
MLREF first greedily selects the rule with the maximum load
in an SDN switch, and then based on the selected rule (we
call it old rule below), it generates a new rule with a higher
priority and a longer source IP prefix. It is notable that except
the priority and the source IP prefix fields, all other fields
for the new rule are the same as the old rule (lines 7, 8, 21
and 25 in Algorithm 1). Evidently, if the new rule is added
into the SDN switch, some of the flows matching the old rule
will be offloaded to the new rule. The load of the new rule
is determined by its source IP prefix. MLREF tries to choose a
source IP prefix for the new rule such that the load of the new
rule and the old rule are balanced. To do that, MLRF searches
the prefix trie of source IPs using width first strategy (lines 12
- 33 in Algorithm 1).

V. THE JOINT OPTIMIZATION ALGORITHMS

In this section, we propose two heuristic algorithms to
efficiently tackle the joint optimization problem of TMM and
TE. The two algorithms are called TMM First (TMMF) and
TE First (TEF), respectively.

A. The TMMF Algorithm

It has been shown that in real networks, a small number of
large flows may account for more than 80% the traffic volume
[34]. Accurately measuring the large flows can yield the best
improvement of TM estimation performance [5]. Therefore, T-
MMF first tries to directly measure the maximum total volume
of flows by using available TCAM entries (traffic measurement
optimization), then it adjusts the forwarding actions of the
rules for the large flows by considering the TE objective (flow
routing optimization). It is notable that different from heavy
hitter detection algorithms, TMMF maximizes the total volume

Algorithm 1 The Maximum Load Rule First Measurement
Rule Generation Strategy

Input: Network topology G(V, L).
Output: The rule sets R for the SDN switches.
I: R+ 0
2: for each node s € Vspn do
3:  add the routing rules in node s to set R
4:  compute the load of each rule r; € R, and the set of flows
matching the rule 7,
5:  while |R,| < ns +m; do
6 ro1d <— the rule with the maximum load in R,
7 Tnew < Told
8: Trew-Priority <— Toiq.priority + 1
9: lota < load(roia)  /lload(r) denotes the load of rule r
0 Apin % “lota I Apin = 0 represents that the loads
of rnew and 714 are balanced

11: Ttemp < Tnew

12: while load(riemp) > 5 - lota do

13: Présre <= Ttemp-STC_prefix

14: prek.. « left child of pres,. on the prefix trie
15: prel . « right child of pre.,. on the prefix trie
16: TL — Thew

17: TR < Thew

18: rL.sre_prefiz « prel.,

19: B src_prefiz < pref.,

20: it Apmin > [load(r™) — 3 - loa| then

21: Tnew-STC_prefix < preﬁm

22: Amin < [load(r™) = 3 - Lol

23: end if

24: it Apin > [load(r®) — 1 - lo14| then

25: Trew.sTc_prefic < pref.,

26: Annin — |load(7"R) — % Lotd|

27: end if

28: if load(r™) > load(r™) then

29: Ttemp = TL

30: else

31: Ttemp — rR

32: end if

33: end while

34: RS < RS U Tnew

35: update the loads of the rules 74,4 and 7., and update the

sets of flows matching the rules 7,;q4 and 7peq -
36: end while
37: R+ R;UR
38: end for
39: return R

of the directly measured flows rather than tracking the top-k
heavy hitters lows under the TCAM capacity constraint.

Thus, how to find out the expected large flows is impor-
tant for TMM. To solve this problem, iSTAMP [5] uses a
two-phase approach. In the first phase, iSTAMP sequentially
measures the initial sizes of individual flows over multiple
time slots, i.e., only a portion of flows are measured in each
time slot due to the TCAM capacity constraint. In the second
phase, iSTAMP measures the £ largest flows and estimates TM
based on the large flow and aggregation flow measurements.
In iSTAMP, measuring the per-flow sizes in the first stage
is costly and time-consuming, especially when the available
TCAM entries are limited and the number of flows is large. In
order to mitigate the overheads, TMMF estimates the per-flow
sizes based on the statistics of the rules generated by MLRF.
Although the estimated per-flow sizes may not accurate, they
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are suffi aztive for us to ﬁ‘fnﬁgagut the large flows.
The siny esukts'show that we can find out the real large

vy high pbability by using the estimated per-

flow sizes.
(1) Traffic Measurement Optimization

In SDN networks, a flow may go through several SDN
switches. Thus, allocating which SDN switch to measure an
interested large flow is also an important problem, which is
called Flow Measurement Allocation (FMA) in this paper. The
solution of FMA has an impact on the measurement results.
Let us consider the example in Fig. 3. There are four flows:
A—F,B—F,C—F, and D — F. The routes of the flows are
indicated by lines with different colors. We assume that both
SDN switches B and D have two available TCAM entries. So
if flows A—F and B— F are allocated to be measured at SDN
switch D, the flow C — F and D — F' cannot be measured.
Nevertheless, we can measure flows A — F and B — I at
SDN switch B and measure flows C'— F' and D — F' at SDN
switch D. In order to achieve the best improvement of overall
estimation accuracy, we need to get an optimal solution of
FMA. The FMA problem can be formulated to a Mixed Integer
Linear Program (MILP) [36]. However, to make our solution
more scalable, we proposed an efficient algorithm for solving
the FMA problem. For facilitating the discussion of how to
find an optimal solution of FMA, we first give the definitions
for the feasible solutions and optimal solutions of FMA.

Definition 1 (Feasible solutions of FMA): Given the set
of flows F' = {f1, fa, -+, fm} and the set of SDN switches
Vspn = {v1,v9,-+- , vk}, a solution of FMA is denoted as
U= {Po i, ,¢;i,~~ ;%" } where LZJ;Z =1 iffow
fi is allocated to be measured at SDN switch v;, and 1) fj =
0 otherwise. We say an allocation solution is feasible if it
satisfies the following constraints.

cl) If w? =1, flow f; must go through SDN switch v;.

¢2) For Yv; € Vspn, ZﬁEF @bl]ii < my,, where m,; is the

number of available TCAM entries in SDN switch v;.

¢3) For Vf; € F, ZU]‘EVSDN w;)f <L

Definition 2 (The utility of a feasible solution): The utility
of a feasible solution ¥ is denoted by f(¥), which is defined

F)y = >0 N wy il

v;€VspnN fi€F

Definition 3 (The optimal solution of FMA): A feasible
solution ¥* is optimal if it meets the following condition:

For any feasible solution ¥, f(U*) > f(U).

—— > FlowB-F

Y fer Vior

Vi Vi
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Fig. 4: The auxiliary bipartite graph and a maximum weight matching
denoted by red dashed lines.

In order to represent the relationship between flows and
SDN switches, we construct an auxiliary bipartite graph. We
denote the auxiliary bipartite graph as G4(Va = VeUVs, La),
where V4 represents the node set and L 4 is the link set. Each
node vy, € Vp corresponds to a flow f; € F, and each node
v) € Vj corresponds to an available TCAM entry j in SDN
switch s € Vgpn. If a flow f; € F goes through a SDN
switch s € Vspn, there is a directed link (vy,,v?) from node
vy, to each node v (j < my). The weight of the link (v, v?)
is set to the estimated size of flow f;. The auxiliary bipartite
graph of the example in Fig. 3 is illustrated in Fig. 4.

Theorem 1: A maximum weight matching of the auxiliary
bipartite graph is an optimal solution of the FMA problem.

Proof: Tt can be easily verified that a matching of the
auxiliary bipartite graph corresponds to a feasible solution
of the FMA problem, i.e., the matching satisfies constraints
cl) to c3) in Definition 1, and the weight of the matching
equals to the utility of the feasible solution. Conversely, a
feasible solution of the FMA problem may correspond to a set
of matchings of the auxiliary bipartite graph, whose weights
equal to the utility of the feasible solution. Because the flows
selected by a feasible solution of the FMA problem can be
measured by using different TCAM entries (i.e., corresponding
to different matchings). For example, in Fig. 4 the matchings
denoted by red lines and blue lines respectively correspond to
the same feasible solution of FMA. Thus, a maximum weight
matching of the auxiliary bipartite graph corresponds to an
optimal solution of the FMA problem

Based on the discussions above, the detailed procedures of
TMMF for selecting large flows to take direct measurement
are shown in Algorithm 2. Since a maximum weight matching
of the constructed auxiliary bipartite graph is an optimal
flow measurement allocation solution, TMMF will select the
flows covered by the maximum weight matching for direct
measurement (lines 5-7). The red dashed lines in Fig. 4 denote
a maximum weight matching of the auxiliary bipartite graph.
In the example, two rules will be generated and installed in
node B to measure flow far and flow fpg, and two rules
will be generated and installed in node D to measure flow
fCF and flow fDF-

(2) Traffic routing optimization

In the above TMM optimization problem, the set of directly
measured flows is determined. In this step, TMMF optimizes
the traffic distribution by adjusting the paths for the flows in



Algorithm 2 Selecting Flows For Direct Measurement in
TMMF

Input: Network topology G(V, L) and the set F' of flows.
Output: The set F,,, of flows for direct measurement.
1: F,, <10
2: estimate the flow sizes based on the statistics of the rules
generated by MLRF strategy (Algorithm 1)
3: sort the flows in F' according to their estimated sizes in decreas-
ing order
4: construct the auxiliary bipartite graph Ga(Va = VFpUVs, La),
based on the estimated flow sizes and the routes of the flows
5: find a maximum weight matching M on Ga(Va = Vg U
Vs, La) )
for each link (vy,,vl) € M do
add flow f; to F,.
end for
return F),

0L X

F,,, under the TCAM capacity constraint. From the Section III.
A, we know that all the flows are routed along the shortest
paths in default. We assume that the source and destination
nodes of flow f; are s and d, respectively, and spsq is the
shortest path between nodes s and d. If a SDN node u is on
the shortest path sp,q, the flow f; can be forwarded to any
feasible neighbour of node u by adding a dedicated flow rule
for flow f; in node u. A neighbor v of SDN node w is feasible
for flow f; if it satisfies the following constraint:

cd) spsy N spyg = P (i.e,. Spsy and sp,q do not include the
same nodes), where spg, and sp,q are the shortest paths.

The constraint ¢4) guarantees that the path p; = spg, U
(u,v) U $pyq is loop-free. If node v is a feasible neighbor of
measurement node u, the path p; = spg, U (u,v) U $pyq is
called a feasible path for flow f;. Since the flow f; can be
directly measured at SDN node w if path p; is select to carry
flow f;, node w is called the measurement node of path p;. For
each directly measured flow f; € F,,,, we add all its feasible
paths to the set of candidate paths P;. Then we select a path
to carry each flow f; € F,,, from the feasible path set P; such
that the maximum link utilization of the links is minimized
and the TCAM capacity constraints of the SDN switches are
obeyed. The traffic engineering problem can be formulated as
follows:

Minimize t (12)

S =1 Vfi€F, (3)
pEP;

S Y s weVin (9
fi€Fm pEFP;

L Sip + T
2 fieFy 2upep, Mipdip ‘<t vielL (15)
Cl

Same as the problem in Section III, constraints (13),
(14), and (15) are the demand constraints, TCAM capacity
constraints, and link utilization constraints, respectively. In
constraints (15), r; denotes the total volume of flows on
link [, which are not directly measured. Although the above
formulation is also a MILP problem, the number of variables
and constraints is far less than that of the MILP problem in

Section III. B. So the above MILP problem can be solved in
a short time (just several seconds in our simulations).

By solving the MILP problem, we can obtain the path for
each flow in set Fj,. To realize the selected paths for the
flows in set F;,, we need to install the flow rules generated
by Algorithm 3 in the SDN switches. It is notable that the
flows in F; can also be directly measured by the flow rules.

B. The TEF Algorithm

Unlike TMMF, TEF first uses TCAM entries to adjust
the routes of some flows such that the TE performance is
optimized, and then it uses the rest of the available TCAM
entries to measure the large flows that are not measured.

(1) Traffic Routing Optimization

The traffic routing optimization problem in hybrid SDN
networks is studied in [27]. In [27], the authors propose
a polynomial time algorithm to find admissible paths for
flows such that the TE performance is optimized. However,
the algorithm cannot be used in the SDN networks with
TCAM capacity constraint. To cope with the TCAM capacity
constraint, TEF assumes that the feasible candidate paths for
each flow are pre-computed. In hybrid SDN networks, a path
p from source node s to destination node d is termed feasible
if it satisfies the following two constraints:

¢5) For each non-SDN node u € p, link (u,v) is on the
shortest path from node u to node d, where v is the next node
of uw on path p.

¢6) The path p is loop-free.

We note that constraint ¢5) ensures that the next hop to a
given destination node at a non-SDN node follows the shortest
path routing paradigm. Let P; denote the set of feasible paths
for flow f;. Given the sets of feasible paths for the flows,
the traffic routing optimization algorithm selects a path from
the feasible path set to carry each flow such that the TE
performance is optimized. However, the complexity of the
traffic routing optimization problem increases exponentially
with the number of feasible paths. To reduce the complexity,
we find at most K feasible paths for each flow. We use an
algorithm modified from the K-shortest path algorithm [37]
to find at most K feasible paths for each flow. The K-shortest
path algorithm generates candidate paths from each node on
an existing path. However, in our problem, a non-SDN node
cannot forward a flow to a neighbor that is not on the shortest
path from the non-SDN node to the destination node of the
flow. Thus, the modified algorithm only generates candidate
paths from the SDN nodes on an existing path. To ensure that
the returned paths are feasible, infeasible paths generated by
the modified algorithm will be ignored.

Given the feasible path sets for flows, the traffic routing
optimization problem can also be formulated to a MILP
problem as follows.

Minimize t

(16)

Zéil):l VfiEF

pEP;

A7)



Algorithm 3 The Flow Measurement Rule Generation Strategy
of TMMF

Input: Flow set F, and path set P.

Output: The sets of rules R for the SDN switches.
1: for each node s € Vspn do
2 add the default routing rules in node s to R,
3: end for
4: for each flow f; € F, do

5:  p < the path p for carrying flow f;.

6.

7

8

u <— the measurement node of path p.
v <— the next node of node u on path p.
: To1d — the rule matching flow f; in set Rs
9: Tnew < Told

10: Tnew-PTiOTILY <= Thew.priority + 1
11: Tnew.STC_prefix < fi.src_prefix
12: Tnew-action < forward_to_node_v.
13: Ru < Ru U Tnew

14: end for

15: for each node s € Vspn do
16: R+ RUR;
17: end for

18: return R

Z Z YipOip <My Vv € Vspn (18)
fi€F; pEP;

7l4 (51
Zf,,eF ZpeFP,, lipQip <t Viel (19)

@]

Comparing with the MILP model used in TMMEF, the MILP
model used in the TEF is more complex since it has much
more variables and constraints. The MILP model used in TEF
needs to decide the paths for all flows, while the MILP model
used in the TMMEF only need to select paths for large flows in
F,,, which are determined by Algorithm 2. In real networks,
the number of flows in F' is much larger than the number of
large flows in Fj, [34]. Furthermore, the number of feasible
paths for the MILP model used in TEF is also larger than
that for the MILP model used in TMMF. We cannot get
optimal solutions for the MILP model used in TEF within
an acceptable time in our simulations. Therefore, to efficiently
solve the problem, TEF uses the Genetic Algorithm (GA) [38]
to search a good solution for the traffic routing optimization
problem.

The GA derives from the principles of natural selection and
evolutionary theory. The GA mainly involves the following
steps:

1) Represent a solution as a chromosome

2) Randomly generate an initial population of solutions.

3) Evaluate the fitness of the solutions and select a portion
of solutions called parents to breed a new generation.

4) Generate children from selected parents by crossover and
mutation operations.

The GA will return the best solution when the termination
criterion is reached. Based on the above description, the GA
based traffic routing optimization algorithm is given in Algo-
rithm 4. For the traffic routing optimization problem, a chro-
mosome is represented as a vector ¢ = [¢1, ¢, , ¢y CN],
where gene ¢; (¢; < K) is an integer to denote that flow f;
selects the ¢;th candidate path from P;. Namely, a chromosome

Algorithm 4 The GA Based Traffic Routing optimization
Algorithm

Input: The network topology G(V, L), flow set F, and candidate
path sets for the flows.

Output: The set of selected paths P for the flows.

1: randomly generate M, chromosomes stratifying the TCAM

capacity constraint, and add the chromosomes to vector Pop.
:iterpum < 0.
1A < pa X Mp, ip + (pa + pup) X M,
while iternum < Imae do

evaluate the fitness of the chromosomes in Pop.

sort the chromosomes in Pop in increasing order of their

fitness value.

7: class A < Pop[l,ia]. // Pop[l,ia] denotes the elements
of vector Pop index from 1 to 74.

8: class B < Poplia + 1,i5].
9:  class C < Popliz + 1, Mp).

AN A

10: k « 0.

11:  while k < (M, —ig) do

12: select a parent pl from class A.

13: select a parent p2 from class AU B (p2 # pl).
14: add the parents pair (pl,p2) to set Par.

15: E++.

16:  end while
17:  for each pair of parents (pl,p2) € Par do

18: generate a child ¢ by performing crossover and mutation
operations (Algorithm 5).
19: add c to set O.
20:  end for
21:  replace chromosomes of Pop in class C' by the children in
0.

22: ternum + +

23: end while

24: Cpest < the best chromosome in Pop. B
25: add paths represented by the chromosome cpest to set P.
26: return P

in the GA algorithm represents a routing strategy for all flows.
A chromosome is feasible if the routing strategy represented
by the chromosome satisfies the TCAM capacity constraints
of SDN switches. Initially, we randomly generate M), feasible
chromosomes. To eliminate the infeasible chromosomes and
keep good feasible chromosomes in the evolution process, the
fitness of a chromosome c is evaluated using the cost function
defined as follows.

J(e) = t(e) + maz{ ¥

vEVspN

m;),0}, (20)

where t(c) and 1m; are the maximum link utilization and the
number of TCAM entries required for realizing the routing
strategy represented by the chromosomes c, respectively. We
note that if > . (m; —m;) > 0, the chromosome
is not feasible (violate the TCAM capacity constraint). The
fitness value of a feasible chromosome is the maximum link
utilization implementing the routing strategy represented by
the chromosome, and the fitness value of an infeasible chro-
mosome is the summation of the maximum link utilization and
the total number of TCAM entries still required for realizing
the routing strategy represented by the chromosome. Clearly,
the infeasible chromosomes have higher fitness values than the
feasible chromosomes.

To inherit good chromosomes, we first sort the chromo-
somes in increasing order of their fitness values, the population



Algorithm 5 The Crossover and Mutation Operations

Input: The parents pl and p2, 7, and p,.
Output: A child ¢ of pl and p2.
1: for each gene g =1,2,--- ,N do
2:  generate a random number 7, between 0 and 1.

3: generate a random number 7. between O and 1.

4: if r, < py, then

5: generate a random number k between 0 and K.
6: clg] = k.

7: else if r. < 7 then

8: clg] = pl[g]

9: else

10: clg] = p2[g]

11: end if

12: end for

13: return c

is divided into classes: the first 4 X M, chromosomes
(class A), the next pp x M, chromosomes (class B), and
the remaining chromosomes (class C). p4 and pp represent
the proportions of class A and class B chromosomes in the
population, respectively, and they are respectively set to 0.2
and 0.4 in this paper. For the parent selection, one parent is
chosen form class A, and the other parent is selected from class
AUB. In each generation, we choose (1—pa—pg) % M, pairs
of parents, and each pair of parents generates a child. To create
the next generation, we directly promote all chromosomes in
classes A and B, and replaces all chromosomes in class C
by the children generated by the selected parents. With these
design principles, the genes of chromosomes with lower fitness
values have the higher probability of being inherited to the
next generation, and the good chromosomes are retained.

The crossover operations are done on the selected parents.
Let parameter 7 be a real number between 0.5 and 1, which
determines whether a gene of a child is inherited from parent
pl (selected from class A) or parent p2 (selected from class
AU B). To avoid falling into the local optimal solution and
diversify the solutions, a mutation operation is performed
on each child. The mutation operation simply modifies the
value of a gene to a random integer between 1 and K. Each
gene of a chromosome is mutated with probability p,,, which
is set to 0.01 in our simulations. The details of crossover
and mutation operations are shown in Algorithm 5. In our
implementation, the generational process of GA is repeated
over N; generations.

(2) Traffic Measurement Optimization

In the above traffic routing optimization problem, TEF
selects a feasible path for each flow. Let p; be the path selected
for flow f;, v; be a SDN node on path p;, and N H (v;, p;) be
the next hop of node v; on path p;. We know that if link
(vi, NH(v;,p;)) is not on the shortest path from node v; to
the destination node of flow f;, a new rule is required at node
v;, and thus the flow f; can be directly measured at node v;.
Note that there may still have available TCAM entries at SDN
switches after implementing the traffic routing optimization.
For this case, the available TCAM entries can be used to
measure large flows that are not directly measured. Algorithm
6 shows the details of flow rule generation strategy of TEF.

Algorithm 6 The Flow Measurement Rule Generation Strategy
of TEF

Input: Network topology G(V, L) and the set of flows F'.
Output: The rule sets R for the SDN switches.

1: R+ 0

2: for each node s € Vspn do

3:  add the routing rules in node s to R,

4: end for

5: estimate the flow sizes based on the statistics of the rules

generated by MLRF strategy (Algorithm 1)

6: find the feasible candidate path sets P for the flows.
7: select a path p; for each flow f; € F' using Algorithm 4
8: for each flow f; € F' do
9: d < destination node of flow f;.
10:  for each node v; € p; do
11: if node v; is a SDN node and link (v;, N H (v;,p;)) is not
on the shortest path from node v; to node d then
12: To1d — the rule matching flow f; in set R
13: Tnew < Told
14: Trew-Priority <— Tnew.priority + 1
15: Tnew.STC_prefix < fi.src_prefic
16: Rs + Rs UTpew
17: Fop <~ F U f;
18: end if
19:  end for
20: end for

21: if there still have available TCAM entries in SDN switches then
22: F <« F/F,

23:  sort the flows in set F' according to their estimated sizes in
decreasing order

24:  construct the auxiliary bipartite graph Ga(Va = Vp U
Vs, La), based on the estimated flow sizes and the routes
of the flows

25:  find a maximum weight matching M on Ga(Vs = Vi U
Vs, La) _

26:  for each link (v;,v]) € M do

27: Toid < the rule matching flow f; in set R,

28: Tnew < Told

20: Trnew-Priority <— Tnew.priority + 1

30: Tnew-.STC_prefix < fi.src_prefix

31: Rs — Rs @] Tnew

32:  end for

33: end if

34: for each node s € Vspn do
35: R+ RUR;

36: end for

37: return R

VI. PERFORMANCE EVALUATION
A. Simulation Setup

Network topologies and dataset: We use two well known
real network topologies: Geant [40] (23 nodes and 37 links)
and Abilene [39] (12 nodes and 15 links). We assume only a
subset of nodes are deployed with SDN switches. The nodes
with the higher degree have higher priority to deploy as SDN
switches. If there is a tie, the nodes are ordered arbitrarily.
Unless specified, the number of SDN switches in Geant and
Abilene is set to 6 (6/23 =~ 24%) and 4 (4/12 =~ 33%),
respectively. We assume that the number of available TCAM
entries (m) is the same for all of the SDN switches. Since the
IP prefixes assigned to each node are unknown, we randomly
select a set of IP prefixes from IP prefixes owned by China
Telecom for each node. The number of prefixes assigned to
each node is uniformly distributed in the range [2, 5]. The



traffic matrices of Geant and Abilene for a specific time period
are publicly available. We randomly choose 100 TMs from the
dataset, and we use X to denote the ith TM. The TMs provide
the traffic sizes between nodes in the networks. However, in
our simulation, we need fine-grained TMs, which provide the
traffic sizes between the prefixes. To get the fine-grained TMs,
we use the following equation:

|fil = | fsal- len(fi.src_prefix) len(f;.dst_prefiz)

> len(pre) > len(pref)
pref€Preg pre€Preg
where | fsq| denotes the size of aggregated flow between nodes
s and d (given in the dataset), len(-) operator returns the length
of an IP prefix, and Preg and Preg denote the set of prefixes
owned by nodes s and d, respectively. In the simulations, we
use r to represent the flow aggregation ratio, which is defined
as the ratio between the number of total available TCAM
entries and the number of flows, i.e., r = m - VS—””'. Since
many TCAM entries are used to configure the flow rules for a
variety of network management and operation tasks, a limited
number of available TCAM rules in each switch are used to
measure flows. Thus, the flow aggregation ratio is low (varies
from 0.1 to 0.2) in the simulations. The MILP model used in

TMMF is solved by CPLEX.

Performance Metrics: The metrics used in our perfor-
mance evaluation are defined in equation (22). Normalized
Mean Absolute Error (NMAE) is widely used performance
metric for measuring the accuracy of TM estimation. In addi-
tion, TMMF and TEF can also be used for Heavy Hitter (HH)
detection. So to evaluate the effectiveness of using TMMF
and TEF for HH detection, we use the average probability of
detection (P ;;) and average probability of false alarm (Pi)
defined in equation (4), where 6 is a pre-determined threshold.
To evaluate the TE performance of the joint optimization
algorithms, we use maximum link utilization (M LU).
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where M is the number of evaluated traffic matrices.

B. Simulation Results

(1) The TMM Performance

In the simulations, we compare TMMF and TEF with
iISTAMP+EAT (iSTAMP with EAT) [5], iSTAMP+BAT (iS-
TAMP with BAT) [5], and WLP+GRP [22], where EAT
(Exponential Aggregation Technique) and BAT (Block Ag-
gregation Technique) are two different aggregation matrix
design strategies used in iSTAMP [5]. In BAT, each TCAM
entry aggregates an equal number of flows. While in EAT,
more TCAM entries are allocated to larger flows by adjusting
parameters p and o [5]. We use the same setting for parameters
p and o as [5], i.e., p = 1 and o = 5. Although the
traffic measurement strategies generated by EAT and BAT
may be infeasible for implementation in practice, EAT and
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+— WLP+GRP
TMMF

TEF
TEF-MILP
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Fig. 5: NMAE in Geant and Abilene topologies when 7 varies

BAT can also be viewed as performance benchmarks for our
proposed algorithms in the aspect of TMM. To improve TMM
accuracy under TCAM capacity constraint, WLP-GRP also
selects large flow to take the direct measurement. However,
different from TMMF and TEF, WLP-GRP uses weighted
linear prediction method to predict the flows that need to
be directly measured. Moreover, to show the efficiency of
TMMF and TEF, we also compare TMMF and TEF with
TEF-MILP , which also uses the TE first strategy, but gets the
optimal routing solution by solving the MILP model (Eq.(16)-
Eq.(19)) instead of using GA. In the TEF algorithm, the initial
chromosomes are randomly generated. Thus, to reduce the
impact of randomness on the simulation results, we show
the average results of 100 runs for each simulation of TEF
algorithm. In order to show the stability of the TEF algorithm,
we also show the 95% confidence intervals for the results of
TEF algorithm.

Fig. 5 shows the NMAEs of MLRF, iSTAMP+EAT, iS-
TAMP+BAT, WLP+GRP, TMMF, TEF, and TEF-MILP under
different aggregation ratios. From Fig. 5, we can observe that
as expected, the NMAEs of the seven methods decrease with
the increase of the flow aggregation ratio . Most importantly,
we can observe that the NMAEs of TMMF and TEF are
much better than iSTAMP+EAT and are very close to those
of iISATMP+BAT (the differences are within 0.05). These
results demonstrate that TMMF and TEF can generate feasible
traffic measurement rules that can achieve high TM estimation
accuracy. We note that in all cases, the NMAEs of WLP+GRP
and TMMF are slightly lower than the NMAEs of TEF. This is
because WLP+GRP and TMMF directly measure more large
flows than TEF under the TCAM capacity constraint. More-
over, we also can see that WLP+GRP and TMMF almost have
the same performance in terms of NMAE, but WLP+GRP does
not consider the TE objective. This verifies that TMMF has
good TM measurement performance. Furthermore, we also can
see that MLRF has much higher NMAE than TMMF and TEF.
However, MRLF is a simple algorithm with low computational
complexity and it can provide useful information as the first-
stage estimator for TMMF and TEF. Although, TEF-MILP
performs slightly better than TEF in terms of NMAE, however,
the average running time of TEF-MILP is 10 times longer than
that of TEF.

To evaluate the impact of the number of deployed SDN
switches (SDNnuym) on the traffic matrix measurement, we
conduct simulations under different number of SDN switches.
Since the capacity of TCAM is very limited, the flow ag-



=— MLRF
+— ISTAMP+EAT
05 +— ISTAMP+BAT
+— WLP+GRP
-~ TMMF
TEF
TEF-MILP

i « MLRF 4
« ISTAMP+EAT
+— ISTAMP+BAT
v WLP+GRP
- TMMF 0.4
TEF
TEF-MILP

NMAE
S
NMAE

¥ — TNe—
Py o |

3 4 5 6 7 8 9 10 1 12 2 3 4 5 6 7 8

The number of SDN switches (SDNy,,) The number of SDN switches (SDN,,,)
(a) Geant Network (b) Abilene Network
Fig. 6: NMAE in Geant and Abilene networks when S DN, varies

gregation ratio is low in real networks. In order to evaluate
the performance of our proposed approaches under low flow
aggregation ratio, the number of TCAM entries in each SDN
switch of GEANT and Abilene networks is set to 110 and
75, respectively. Under this setting, the flow aggregation ratio
of Geant network is about 0.2 when 50% of the nodes are
SDN-capable. In Fig. 6, the NMAEs of all the algorithms
decrease quickly with the increasing number of deployed SDN
switches. When 50% of the nodes are SDN-capable (r = 0.2),
the NMAEs of TMMF and TEF are about 0.1 and 0.15 for
both Geant and Abilene, respectively. This demonstrates that
even if a small number of SDN switches are deployed in
the network, the TM estimation accuracy can be significantly
improved. The reason is that both the number of flows going
through SDN nodes and the flow aggregation ratio increase
with the number of deployed SDN nodes. This implies more
large flows can be directly measured as the number of SDN
nodes increases. As shown in Fig. 6, we also can observe that
the NMAEs of TMMEF and TEF are very close to the NMAEs
of iISATMP+BAT, which demonstrates TMMF and TEF can
achieve satisfactory TM measurement performance under the
flow aggregation constraint. In addition, similar to the results
in Fig. 5, TMMF and TEF (ILP) also perform slightly better
than TEF in term of NMAE under most cases.

HH detection is important for traffic engineering and net-
work security. The proposed MLRF, TMMF, and TEF can also
be applied for HH detection. Fig. 7 presents the effectiveness
of MLRF, iSTAMP+EAT, iSTAMP+BAT, TEF and TMMF
for detecting HHs in Geant and Abilene networks. In the
simulations, the threshold 6 defined in Eq. (22) is set as 15%
of the size of the largest flow in a TM. From Fig. 7, we can see
that both TEF and TMMF can achieve very high probability of
detection. For example, even when the flow aggregation ratio
r is 0.1, the PI‘ZIIH of TEF and TMMF is higher than 0.85,
and when the flow aggregation ratio is 0.2, the Pﬁ g of TEF
and TMMF can be higher than 0.95 in Geant network. Note
that the Pg,; of MLRF is high (higher than 0.75) even when
the flow aggregation ratio is low (e.g., » = 0.1). This implies
that we can identify large flows for TEF and TMMF using
the rules generated by MLRF. We also have the probability
of false alarms P}%* for TMMF and TEF, and the P, for
TEF and LFF are negligible (less than 0.001). To save space,
we do not show the results here.

(2)The TE Performance

The TMMF and TEF optimize the TE objective by adjusting
the routes for some large flows with the available TCAM
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entries of SDN switches. The TE objective considered in this
paper is the maximum link utilization M LU. We assume
that the flows follow the default routing if their routes are
not adjusted by TEF and TMMF. Fig. 8 shows the M LU
of default routing, TMMF, TEF and TEF-MILP in Geant
and Abilene networks. As shown in Fig. 8, the M LU of
TMME, TEF and TEF-MILP decrease with the increase of
flow aggregation ratio. This is because higher flow aggregation
ratio means more TCAM entries can be used to adjust the
routes of large flows. Most importantly, we observe that the
MLU of TMMF, TEF and TEF-MILP is much lower than
that of default routing, which indicates that TMMF, TEF and
TEF-MILP can significantly improve the TE performance. In
all cases, TEF can achieve lower M LU than TMMEF. The
results are determined by the different strategies used by TEF
and TMMEF. In TEF, the available TCAM entries are first
used to improve the TE objective by adjusting the routing
of some larges flow. Accordingly, TEF can achieve better TE
performance than TMMEF. As expected, TEF-MILP performs
better than TEF in terms of MLU, and the performance gap
between TEF-MILP and TEF is less than 5%. However, the
running time of TEF-MILP is at least 10 times longer than
that of TEF and TMME. This demonstrate that TEF and TMFF
can efficiently find good solutions. The simulation results in
Abilene network also follow the similar trend as in Geant
network.

Fig. 9 shows the M LU of the algorithms under the different
number of SDN switches. In these simulations, the number
of TCAM entries in each SDN switch for the GEANT and
Abilene networks are set to 110 and 75, respectively. This
figure shows that by increasing the number of SDN switches
(SDNnym), the M LU of TEF and TMM is reduced signifi-
cantly. For instance, in Geant network, the M LU of TEF and
TMM is higher than 0.8 when S D Ny, = 3, while the M LU
of TEF and TMM are lower than 0.6 when SDNpyy., = 5.
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The reason is that by increasing S DNy, both the available
TCAM resource and the number of large flows going through
SDN nodes increase, indicating that the routes of more large
flows can be optimized. We can see that similar to the results
in Fig. 8, TEF also performs better than TMMF under all
cases since TEF uses a prior load-balancing with available
TCAM resource. Since TEF-MILP can obtain optimal routing
solution by solving a MILP model, TEF-MILP performances
better than TEF. However, the performance gap between TEF-
MILP and TEF is less than 5% in all cases.

TEF and TMMF jointly optimize the traffic routing and
traffic measurement strategies based on the estimated TMs.
However, the estimated TMs inevitably have errors (see Fig. 5
and Fig. 6). To evaluate the impact of traffic matrix estimation
error on the TE optimization performance, we use Mean
Relative Error (MRE) of M LU as the performance metric.
Let MLU; and M iUZ— denote the maximum link utilization
of the algorithms by using real TM ¢ and estimated TM i as
inputs, respectively.The MRE of M LU is defined as:

S A~
1N [MLU; — MLU,|
MREwio =<3 100
MLU =g MLU, x 100%,

In all cases, the M RlEM ruv of TEF and TMMF are very
low (lower than 4%). The results reveal that the measured
traffic matrices are sufficient for TEF and TMMF to implement
routing optimization.

(3) Dynamic Traffic Scenario

At last, we compare the performance of the algorithms
under dynamic traffic scenario, where flows randomly arrive
and depart the network. We assume that the flows arrive in
a Poisson process with the mean rate of \,, and the flow
durations follow the negative exponential distribution with
mean rate Ld Thus, the traffic load is 2_3 The flow sizes
are randomly generated according to equation (21), and the
source and destination prefixes are also randomly selected.
Fig. 10 plots the NMAE and MLU of the algorithms under
different traffic load. We know that as the traffic load increases,
more flows will share the limited number of TCAM entries.
Thus, in Fig. 10, we can see that the NMAE and MLU
of the algorithms increase with traffic load. Similar to the
results in Fig. 5 and Fig. 6, TMME and TEF have almost
the same performance in terms of NMAE in all cases, and
TMMF has better TMM performance than TEF, while TEF
achieves better TE performance than TMMF. Furthermore, we
also can observe that as the traffic load increases, the TMM
performance gap between TMM and TEF reduces, and the
TE performance gap between TMM and TEF increases. This
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implies that we can use TMMF and TEF in low and high
traffic load scenarios, respectively.

We also evaluated the algorithms on a larger synthetic
topology (50 nodes and 80 links) generated using Barabasi-
Albert model. The aggregated TM between network nodes is
generated using the gravity model, and the fine-grained TM
(about 20,000 flows) is also generated using Eq. (21). The
simulation results in the synthetic topology also show the
similar trend as in Geant and Abilene ISP topologies. However,
due to space limitation, we do not show the detailed results
in this paper.

In summary, by jointly optimizing the traffic routing and
traffic measurement strategies, TEF and TMMF can improve
the TMM accuracy and the TE objective by efficiently utilizing
the available TCAM entries in each SDN node. The simulation
results verify that TEF and TMMF are promising approaches
for realizing online TMM and TE.

VII. CONCLUSION

In this paper, we studied how to jointly optimize the TMM
and TE strategies jointly under the TCAM capacity and flow
aggregation constraints in SDN networks. To describe and
solve the joint optimization problem, we first formulated this
problem as a MILP model. Then to provide an accurate
initial TM for the joint optimization problem, we proposed
an efficient traffic measurement rule generation strategy called
MLRF. MLRF can generate more flow rules to provide infor-
mative measurements for the TM estimation problem. Also,
to efficiently solve the joint optimization problem in large-
scale networks, we proposed two heuristic algorithms, namely,
TMMF and TEF. TMMF and TEF allocate TCAM entries
and generate flow rules for TMM and TE tasks by jointly
considering the TMM and TE optimization objectives. At
last, extensive simulation results on real network topologies
and traffic traces verified that both TMMF and TEF can
significantly improve the performance of TMM and TE under
very limited TCAM resource. The simulation results also show
the effectiveness of MLRF.
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